АЗЛК. виртуальный клуб владельцев автомобилей Москвич
опыт эксплуатации автомобилей Москвич сегодня: 28:07:2004 
Зайти!   Зарегистрироваться!    О Клубе    Поиск     
   Cервис
   Шины и диски
15:07:2004 Братия и сестры!!!! По пожеланиям и заявкам членов Клуба объявляется конкурс на участие в шашлыкоеденирепивопитиеобщение!!!!!!
Подробности

Сейчас на сайте:

Lex 037     Kras     pupkin     ss-13     Avasnik     Dark58     os2ok     converterr     T2141     Леха 656     vovak     D_e_M_o_N     Baras     Ежик     р364     Aleks_nw     Banan     WINHACK     Zhak     Engeneer     Kosmich     КЛОНДАЙК     Vivo     Ray     kozerog     XAViEr     ZUBILO     K.O.T.     avax1     Joker     no_name    

Сейчас в чате:

Aleks_nw   EgorP  

 flam (страница члена клуба)
   

 Очень, очень интересная статья: ТАМ, ГДЕ ЖИВУТ ЛОШАДИ
   
  Там, где живут "лошади"
Увеличение проходных сечений каналов головки блока цилиндров - это, безусловно, весьма эффективный метод увеличения максимальной мощности двигателя. К примеру, вспомним разницу между 8-ми и 16-клапанными методами - у последних при том же объеме мощность существенно выше за счет лучшего наполнения и очистки цилиндров, обусловленных большей площадью сечений каналов и седел.
Однако то, что в теории просто и ясно, не всегда удается реализовать на практике. Основная причина трудностей увеличения сечений каналов любой серийной ГБЦ заключена в снижении толщины стенок каналов и опасности их прорыва при обработке.
Опыт показывает, что для ГБЦ двигателя ВАЗ-21083 критическими величинами диаметров каналов являются 32 мм для впуска и 29 мм для выпуска. Критическими в том смысле, что превышение этих величин резко повышает шансы испортить всю работу. Исправить же ошибку, как правило, не удается, поскольку прорыв стенки происходит в труднодоступном для сварки месте, после чего головку блока останется только сдать в утиль.
Но даже указанные величины (32 мм и 29 мм) заметно превышают стандартные. Более того, если увеличить сечения каналов до этих размеров, седла клапанов окажутся "узким" местом. В таком случае очевидно, что без замены седел на большие уже никак не обойтись.
Чтобы определить, какие седла поставить взамен штатных, необходимо разобраться с диаметром тарелок клапанов, точнее, "вписать" их камеру сгорания. Учитывая, что расстояние между осями направляющих втулок впускного и выпускного клапанов неизменно, вписать тарелки клапанов больше, чем 40 мм (впуск) и 34 мм (выпуск), трудно по причине близкого расположения друг к другу их седел.
Рассчитаем теперь размеры седел. Для того чтобы добиться хорошей формы седла, его наружный диаметр желательно сделать больше диаметра тарелки клапана приблизительно на 1 мм. При этом толщину седла не следует чрезмерно уменьшать, чтобы не "потерять" плотность и надежность его посадки в гнезде. Опыт показывает, что минимальная толщина седла составляет около 2,5-3,0 мм (большие цифры относятся к выпускным седлам).
Исходя из этих данных, не трудно получить, что для диаметра тарелок 40 мм и 34 мм внутренний диаметр седел составит приблизительно 35-36 мм и 29-30 мм. Сравним эти величины с диаметрами каналов - 32 мм и 29 мм. Выходит некоторая нестыковка - чтобы получить минимальное гидравлическое сопротивление потоку, необходимо напротив, не расширение, а некоторое сужение канала на седле.
Согласовать проходные сечения можно, если выполнить плавное расширение, а затем сужение канала непосредственно перед седлом. Правда, эта работа требует осторожности - стенку легко разрушить, особенно, если дополнительно пытаться и изменить направление движения потока (желательно, чтобы при течении цилиндр поток одновременно отклонялся от стенки цилиндра: это необходимо для уменьшения сопротивления, вызванного влиянием стенки).
Отметим, что расширение каналов и увеличение диаметра тарелок клапанов при сохранении фаз газораспределения приведет к некоторому смещению максимумов момента и мощности в сторону больших частот вращения. В данном случае при открытии клапана большого размера на ту же величину, что и стандартного, будет открыто большее проходное сечение. Другими словами, это равносильно установке в ГБЦ со стандартными клапанами распределительного вала с увеличенным подъемом кулачков. В результате можно ожидать незначительного падения крутящего момента двигателя на низких частотах и, напротив, заметного повышения момента и мощности на средних и особенно высоких частотах вращения.
Седла? Нет, втулки и клапаны
Теперь, когда понятна цель, можно начинать решение задачи - доработку ГБЦ согласно сформулированным выше принципам. Технологическая цепочка операций по доработке ГБЦ традиционна: замена седел на большие, удаление старых направляющих втулок расширение каналов с помощью набора шаровых фрез и шарошек, установка новых втулок, обработка седел.
Правда, такая технология, при всей ее простоте и очевидности, имеет недостаток. Дело в том, что при обработке каналов уменьшается толщина их стенок, в том числе, и в зоне отверстий направляющих втулок, и изменяется форма края отверстий: после срезания прилива гнезда в канале край отверстия становится косым, расположенным под углом к оси. Если в такое отверстие втулку поставить с натягом, ее ось немного развернется - в сторону от длинной стенки отверстия к короткой. В результате седло, поставленное заранее, окажется несколько несоосным отверстию во втулке.
Что это означает на практике, понятно - лишнее время на более глубокую обработку седла и снижение качества работы. Поэтому лучше при расстачивании гнезда седла выверять ось расточной головки станка по заранее установленной втулке - это гарантирует соосность.
Технология замены штатных седел на большие ничем не отличается от описанной нами ранее (см. № 1/2002), Особое внимание при этом следует уделить натягу седла (0,0800,120 мм) и созданию большой разности температур деталей перед установкой седел (нагрев ГБЦ до 150-180?С и охлаждение седел в жидком азоте до -180?С).
Материал седел - высокопрочный чугун, предварительно термообработанный до твердости HRC35-38: при меньшей твердости седла долго не прослужат, а при большой их будет трудно обрабатывать.
Седла обрабатываются традиционным способом: на них создаются рабочая и две примыкающие фаски. Разница со стандартным мотором будет, в основном, лишь в ширине рабочей фаски - для надежной посадки клапана лучше уменьшить ее ширину до 1 мм для выпускных и до 0,8 мм для впускных клапанов.
Отметим еще одну "хитрость", связанную с использованием нештатных клапанов. Если двигатель, который мы "строим", должен выдать максимум мощности, то предполагается, что он будет высокооборотным. В то же время штатный газораспределительный механизм может "не справиться" с работой на высоких частотах: в таких условиях клапаны имеют тенденцию "зависать", т.е. закрываться с опозданием. А это опасно - помимо ударных нагрузок на тарелку, грозящих обрывом клапанов, растет риск "встречи" клапанов с поршнями, последствия которой вполне предсказуемы.
Выходов из ситуации, вообще говоря, два. Можно заменить пружины на более жесткие.
Это, без сомнения, повышает надежность работы механизма (хотя снижает его ресурс из-за роста нагрузок), но трудно реализуется на практике - надо решить не только вопрос о том, как подобрать параметры, но и где найти наружные пружины.
Проще другое - сделать клапаны легче стандартных. Здесь, помимо "утоньшения" тарелки (см. № 9/2002), есть еще один вариант: перейти на стержень меньшего диаметра (7 мм вместо 8 мм). Практика показывает, что этим сразу "убиваются" все нужные нам "зайцы" - исключается "зависание" клапанов со стандартными пружинами и облегчается поиск и приобретение нештатных комплектующих. К примеру, как это ни кажется странным, но клапаны двигателя BMW M40 (1,6 л) имеют искомые тарелки (40 мм и 34 мм), а их длина всего на 0,5 мм меньше "ВАЗовских", что вполне успешно компенсируется регулировочной шайбой.
Естественно, под такие клапаны потребуются нештатные втулки, тарелки пружин и сухари. Но это решаемые проблемы - первое можно изготовить из бронзы (хорошо зарекомендовали себя марки БрБ2, БрКМЦ и БрОД), вторые - из алюминиевого сплава (Д-16, В-95), ничуть не уступающего стали по долговечности, третьи подойдут от 16-клапанного двигателя ВАЗ.
Но только доработкой ГБЦ не удается реализовать все потенциальные возможности двигателя. Главная причина - выпускная система, которая в стандартном варианте довольно сильно "жмет" выхлоп, т.е. создает довольно большое противодавление.
Чтобы не потерять ту мощность, которая с такими трудами достигнута, надо провести целый ряд манипуляций с выхлопной системой. Фактически необходимо заново построить выхлопную систему, используя нештатные комплектующие. Так мы и поступили, взяв для этого выпускной коллектор с трубами равной длины, имеющий характерные соединения труб "два в одну", специальный резонатор, а также промоточный глушитель фирмы PRO SPORT.
Естественно, переделка, а более правильно, замена выхлопной системы - удовольствие не из дешевых: все комплектующие с работой "тянут" почти на 15000 руб. Если же добавить к этой сумме цену доработки и установки ГБЦ с увеличенными клапанами (около 23000 руб.), то общая сумма в 38000 руб., скорее всего, охладит некоторые "горячие головы" в их стремлении "выше, дальше и быстрее". Потому как мощность даром никак не дается - особенно когда речь идет о большой мощности. А именно такую мы и рассчитываем получить.
Дальнейшие наши действия вполне очевидны - все аккуратно собрать, отрегулировать и настроить. Чтобы ехать на испытательный стенд к нашим старым знакомым - фирму "Аояма-Моторс".
Не больше, не меньше…
Не вдаваясь подробно в методику проведения испытаний (она была описана в наших прошлых публикациях), перейдем сразу к результатам.
А результат таков: "ВАЗовский" двигатель объемом 1,5 л со всеми доработками выдал максимальную мощность 110 л.с. (81,5 кВт) при 6680 об/мин и максимальный крутящий момент 135 Н•м при 4430 об/мин. Другими словами, мощность впрыска на 53%, а момент - на 23% по сравнению со стандартным двигателем отметим, что наше предположение о том, что переход на увеличенные каналы, седла и тарелки клапанов приведет к росту мощности и момента только на повышенных оборотах, полностью подтвердилось. В действительности такой рост наблюдается уже после 3500-4000 об/мин, в то время как на низких оборотах кривые моменты и мощности совпадают с полученными ранее для менее форсированных вариантов двигателя.
Интересно было испытать еще один двигатель, имеющий аналогичную ГБЦ и выхлопную систему, но распределительный вал с увеличенным подъемом кулачков (№ 54 фирмы "Мастер Мотор") и объем 1,6 л. В данном случае увеличение объема было получено установкой коленчатого вала с ходом 74,8 мм и специальных кованых поршней меньшей высоты (это дополнительные комплектующие и работа на сумму около 16000 руб.). Двигатель 1,6 л "выдал", очевидно, и более высокие параметры - 120 л.с. (88 кВт)/6490 об/мин и 153 Н•м/4320 об/мин. Про мощность такого мотора уже никак не скажешь "мало", тем более, что его доработка не отличалась никакой "уникальностью" - обычная "тюнинговая" работа.
Что ж, результат получен, он вполне хорош, чтобы закончить нашу исследовательскую работу. Однако не хватает выводов и обобщений: попробуем их сформулировать.
Главное, что, на наш взгляд, следует оценить, - это зависимость результата, т.е. мощности двигателя, от затраченных средств. Тогда любому "любителю быстрой езды" будет, к примеру, ясно, как правильно соразмерить желания со своими финансовыми возможностями.
С другой стороны, для моториста подобная зависимость укажет не только на трудоемкость работы и ответственность, но и, возможно, на необходимость приобретения дополнительных навыков и знаний, чтобы успешно выполнять подобные работы.
Такую зависимость мы получили в виде графика зависимости мощности двигателя от стоимости его доводки до этой мощности. Результат был вполне предсказуем, он перед вами - дальнейшие выводы делайте сами.


Оптимальная форма канала: 1 - участок расширения; 2 - участок сужения; 3 - седло; 4 - тарелка клапана.


После установки новых седел хорошо видно ступени между ними и стенками клапанов.


Выхлопной коллектор с равной длиной труб - необходимый компонент выхлопной системы высокофорсированного двигателя.


Протокол испытаний двигателя 1,5 л: максимальная мощность составила 110 л.с. (81,5 кВт).


Протокол испытаний двигателя 1,6 л: максимальная мощность возросла до 120 л.с. (88 кВт).


Зависимость степени форсирования двигателя от финансовых затрат для разных вариантов тюнинга.


Общие сведения
Конструкция головки блока цилиндров это один из наиболее важных путей увеличения мощности и эффективности работы двигателя. Форма каналов, размер и конструкция клапанов, форма и толщина камер сгорания, жесткость всей отливки и другие факторы имеют важное и эффективное влияние на выходную мощность двигателя. На первый взгляд головка может показаться простым узлом, но в реальности большинство известных конструкторов гоночных двигателей затрачивает много времени и сил, чтобы понять и оптимизировать процессы, происходящие в камерах сгорания и каналах головки блока цилиндров.
Некоторые считают подготовку головки блока некой "черной магией", основанной на дорогих вложениях без надежды понять эти "заклинания" и их смысл. Справедливо, что покупка набора профессионально обработанных головок довольно дорога, и после того как вы затратили значительную сумму денег, вам хочется верить, что сделано что-то необычное. Не верьте в это. Полная подготовка "гоночной" головки очень дорога, т. к. для перешлифовки и изменения формы ее поверхностей требуется значительный объем ручной работы. Не думайте, что вы сможете достичь того же самого уровня характеристик, как и квалифицированные механики, обрабатывая головки на своем кухонном столе.
Вначале может показаться, что получение дополнительной мощности от модификации головки блока должно улучшить многие характеристики двигателя, в том числе приемистость, высокую мощность на низких оборотах, расширение области оборотов и т. д. К сожалению, это верно лишь частично. Некоторые модификации головки блока улучшают максимальную мощность, но они не могут помочь, а могут даже уменьшить мощность на, низких оборотах или приемистость. Это совсем не означает, что тщательно подготовленная головка блока цилиндров не может дать улучшений во всех областях. Испытания головок, продемонстрировавших разносторонние улучшения, показали, что они не были достигнуты такими способами как простое использование шлифовальной машинки. Перед тем, как вы сможете аккуратно совершенствовать головки блока, вы должны решить, чего вы будете добиваться: приемистости, экономичности, общих гоночных характеристик и т.д. Вы можете хотеть улучшить более чем одну из этих характеристик и можно в некоторой степени достичь хорошего компромисса между ними.







Впускной канал
Если вы работаете со стандартной головкой блока цилиндров и хотите доработать впускные каналы так, чтобы добиться хорошей мощности на низких оборотах и дополнительно некоторой мощности на высоких оборотах, то хорошим известием будет то, что вам нужно делать очень мало. Ключевым элементом в этом случае будет то, что канал должен иметь малую площадь поперечного сечения, грубую текстуру поверхности и форму, обеспечивающую равномерный поток. Это, с возможным исключением последнего фактора, почти идеально описывает большинство впускных каналов промышленного изготовления. Однако, эти три важных параметра, улучшающих характеристики потока без заметного увеличения каналов, является жизненно важным, т. к. большое поперечное сечение ухудшает работу двигателя на низких оборотах, уменьшает его мощность. Если вы сможете применить правильные "секреты" для достижения этого, то вы будете на один шаг ближе к созданию двигателя, хорошо работающего в обоих концах рабочего диапазона оборотов.
Первый "Секрет" улучшения потока часто пропускают или придают ему мало значения. Это является большой ошибкой, т. к. точная обработка клапана с 3 углами дает значительные улучшения характеристик потока при всех оборотах двигателя. Для большинства двигателей ширина седла впускного клапана в 1,65 мм и выпускного клапана в 1,91 мм и угол 45° на обоих клапанах обеспечивает оптимальный поток, уплотнение и отличную теплопередачу для обеспечения охлаждения головок клапанов. Несмотря на распространенное обратное мнение, седла, более узкие, чем эти, не улучшают поток и могут привести к перегреву клапанов. В заключение, поток часто может быть еще более улучшен добавлением 30° (градусной) фаски на нижней стороне впускного клапана.
Притирка клапанов и седел клапанов достаточно проста и на самом деле является таковой. Но если вы остановитесь на этом, то обманите сами себя, потеряв часть мощности. Относительно небольшие дополнительные усилия, затраченные на обработку канала, могут дать довольно значительную прибавку мощности. Точность в определении областей, форма которых должна быть скорректирована, составляет следующий секрет модификации впускных каналов.
Система впуска рабочей смеси, которая обеспечивает широкий диапазон крутящего момента, не будет существенно ограничивать поток топли-вовоздушной смеси из карбюратора (карбюраторы будут обсуждены в одной из следующих глав) и не позволит потоку смеси потерять свою скорость из-за больших поперечных сечений в каналах. Канал форсированного двигателя должен иметь минимальную площадь поперечных сечений, согласующуюся с максимальным потоком смеси; другими словами, материал нужно убрать только из тех областей, которые заметно ограничивают прохождение потока. Если области с небольшим ограничением объема и скорости потока во впускных каналах будут увеличены путем чрезмерной сошлифовки, то результатом этого может стать уменьшение мощности. Когда работа сделана правильно, то измерения обнаружат, что объем и скорость воздуха, двигающегося через все участки канала, будут выше, чем у стандартной головки блока.
На различных типах двигателей, увеличение входного отверстия канала до максимального размера, ограниченного положениями отверстий для толкателей, является популярным занятием у многих конструкторов-любителей при обработке головки. Однако наиболее критичной областью для общего потока является не входное отверстие канала, а места рядом с седлами клапанов. Поток через основной корпус канала обычно имеет относительно свободный путь, но прохождение мимо клапанов и попадание в камеру сгорания - это совсем другое дело. Хотя стендовые испытания и обнаруживают, что небольшие различия между разными формами каналов могут дать заметный эффект по потоку, подобные модификации применяются почти на всех двигателях и они базируются на старом правиле: металл удаляется из областей, которые существенно ограничивают воздушный поток.
Первое препятствие часто располагается вокруг выступающей части направляющей втулки клапана. Это препятствие может быть иногда уменьшено путем уменьшения высоты и почти всегда - ширины выступа направляющей втулки. Второе серьезное препятствие потоку находится в области седла клапана. Переход от области до седла клапана к области после седла клапана должен быть плавным, а часто имеет место противоположное явление, причиной чего является характерный выступ, остающийся после выхода головки блока с завода, ее обработки чуть ниже седла клапана. Тщательная работа в областях камеры сгорания и седел клапанов по отношению к затраченному времени даст самое большое улучшение в характеристиках потока.

Когда седла клапанов и области камер сгорания оптимизированы, следующим шагом является усовершенствование основной области канала. Рассмотрим для примера головку блока, подготавливаемую для повседневного использования, что поможет иллюстрировать правильные пути выполнения этой работы.
Отверстие впускного канала имеет не традиционную прямоугольную форму, как у промышленных и даже специальных головок, а форму трапеции. Необычная форма, полученная из большого количества испытаний на стендах, указывает на то, что воздушный поток в нижней части канала (меньшее "дно" канала) минимален и поддерживает оптимальную скорость потока. Верхняя часть канала (широкая часть трапеции) является областью интенсивного потока, и увеличение этой области дает больше потока, согласованного со скоростью всего потока.
Следующим "секретом" является то, что гладкие поверхности канала не создают преимуществ по сравнению с шершавыми поверхностями. На стенде проверено достаточно много головок от гоночных двигателей для того, чтобы установить, что это правило, вероятно, применимо практически во всех случаях. Вдобавок, полировка впускного канала требует много усилий, тогда как относительно грубая обработка (осуществляемая бруском или шкуркой зернистостью 80-100) требует нескольких минут работы, а канал работает также хорошо, если не лучше, чем при полировке.
По сравнению с промышленными впускными каналами модификации, описанные выше, часто дают увеличение мощности на 5-8%. В этом случае предполагается, что в выпускных каналах не было сделано никаких изменений. Подобные модификации на выпускных каналах приведут к увеличению мощности на 2-5% (общий прирост составит 7-9%)
Когда вашей основной целью является получение высоких характеристик, можно рассмотреть возможность приобретения набора различных головок блока цилиндров для гоночных двигателей в качестве дополнительного оборудования.
Здесь можно дать некоторый дешевый совет (особенно по сравнению с тем, что вы заплатите за головки). Гоночные головки сконструированы для получения мощности с помощью распределительных валов, предназначенных для подъема клапанов на 17,8 мм или более. Понятно, что скорость в канале с низким подъемом клапанов заслуживает отдельного внимания. Если вы используете только такой распределительный вал, который поднимает клапаны на величину 15,2 мм, то, вероятно, ваши деньги пропадут даром.
Наука о головках блока цилиндров стала очень сложной и не дает однозначного ответа на то, как можно модифицировать впускной и выпускной каналы для получения дополнительных преимуществ от потока смеси. Однако каналы этого типа при необходимости являются достаточно большими по площади поперечного сечения и по объему и работают лучше с профилями гоночных распределительных валов, обеспечивающими высокий подъем клапанов. Вы можете достичь многого, потратив большие суммы денег при решении этой проблемы, но имейте в ввиду, что когда дело идет к модификации канала, имеется четкая граница между практичным и непрактичным. Относительно легко оптимизировать большинство впускных клапанов для работы с распределительным валами, которые обеспечивают подъем клапанов примерно в 14,0 мм. Однако, двигатель "требует" большего от канала, когда используется распределительные валы с более высокой продолжительностью такта впуска и большим подъемом клапанов и количества усилий (и денег), которые потребуются, чтобы удовлетворить этим требованиям и реализовать отдачу потенциальной мощности от головок блока, может быть таким же, как и при подготовке ракеты к старту.
Оптимизация канала по потоку при подъеме клапанов является наиболее практичной для ваших будущих приложений. Толкатель форсированного двигателя со стандартным коромыслом должен ограничивать подъем клапана примерно до 12,7 мм (даже при этом относительно умеренном подъеме бронзовые направляющие втулки клапанов будут необходимы для уменьшения износа и обеспечения оптимального срока службы седла клапана). Если вы позволите себе использовать роликовые коромысла (ракеты), то может быть возможным увеличить практический подъем клапанов до величины 14,0 мм, т. к. роликовые коромысла приводят к меньшим боковым нагрузкам на стержень клапана и на направляющие втулки. Форсированные и гоночные двигатели могут успешно работать при подъеме клапанов до 15 мм, хотя срок службы направляющих втулок и клапанов будет меньше. Двигатели для кольцевых и внедорожных гонок используют величину подъема клапанов в 16,5 мм. Все двигатели автомобилей-дрегстеров используют величину подъема клапанов от 17,8 до 21,6 мм, но механизм привода клапанов и впускные каналы сконструированы для отдачи мощности при очень высоких оборотах двигателя и на очень короткий период времени (с расчетным временем работы несколько минут или часов, а не сотни и тысячи километров).
Зазор от поршня до клапана
Снимите головку блока цилиндров и прилепите слой пластилина к головке поршня. Временно установите головку блока цилиндров со старой прокладкой и затяните болты. Установите и отрегулируйте коромысла и штанги на проверяемый цилиндр. Проверните коленвал на два полных оборота. Снимите головку блока цилиндров и, проткнув слой пластилина в самом тонком месте, измерьте толщину этого слоя. Она должна быть не менее 2 мм для впускного клапана и не менее 2,5 мм для выпускного клапана. Если зазор близок к минимально допустимому значению, то проверьте каждый цилиндр, чтобы быть уверенным в том, что разброс в параметрах деталей не приведет к контакту поршня и клапана.
Советы по работе
Если у вас нет доступа к стенду для измерения характеристик потока, то модификация запутанных форм в каналах головки блока превратится в слепой поиск. Если вы располагаете средствами, то возьмите головку блока, четко представляя себе свои конкретные планы, и обратитесь в мастерскую по ремонту и доводке головок. С другой стороны, если у вас нет денег для обращения в мастерскую, то следуйте приведенным ниже правилам. Они не являются непогрешимыми, но их надо иметь в виду и придерживаться в работе:
• Удалить металл с верхней части канала и вокруг выступа направляющей втулки клапана. Они часто являются областями с наивысшей скоростью потока, и уменьшение препятствий здесь может заметно улучшить мощность лишь с небольшим ухудшением крутящего момента на низких оборотах и топливной экономичности.
• Сглаживайте все изгибы и особенное внимание уделяйте наиболее важным областям, в частности, переходу канала к седлу клапана. Тщательно сглаживайте эти поверхности по плавному радиусу, не удаляя избыточный металл.
• Не удаляйте металл с нижней части канала. Нижняя часть 'пол' канала является областью замедленного потока, и удаление металла оттуда увеличит площадь поперечного сечения канала. Это уменьшит крутящий момент на низких оборотах с очень небольшим (в лучшем случае) улучшением характеристик потока и максимальной мощности.
• Производите зачистку шершавой поверхности на стенках канала. Проверки на стендах показали, что это применимо во всех случаях.
• Обработайте клапаны как можно лучше, т. к. это очень критично. Седла клапанов должны быть правильной ширины, с правильными углами и практически идеально круглыми. Убедитесь, что используется 30-градусная фаска сверху для "помощи" потоку при его попадании в камеру сгорания.
• Как правило, не устанавливайте клапаны в форме "тюльпана" в двигатель с клинообразными камерами сгорания; они дают улучшение потока только в двигателях с четырьмя клапанами на цилиндр или со сферическими камерами сгорания. Оставьте клапаны, близкие по форме к исходным; обычно они имеют плоскую нижнюю сторону с малым радиусом в месте перехода к стержню клапана.

• Удалите острые углы с нижней стороны клапана и сделайте там фаску в 30°.
• Установите бронзовые направляющие втулки клапанов и рассмотрите вариант использования клапанов со стержнями из твердого хрома. Это обеспечит минимальный износ направляющих втулок и стержней клапанов и продлит срок службы клапанов и седел.
• Удаляйте металл с верхней части канала и вокруг выступов направляющих, втулок, но не "опускайте" пол канала и не увеличивайте другие области с низкой скоростью потока.
• Сглаживайте все изгибы, особенно в месте перехода канала в седло клапана. Типичный радиус на короткой стороне в 0,13 - 0,38 мм (обрыв края на прямом участке) и на длинной стороне в 1,5 - 5,1 мм обеспечивают наилучшие характеристики потока.
• Поддерживайте контуры и изгибы канала для оптимизации движения части потока по направлению к центру цилиндра
• Обработка (зачистка) грубой поверхности поможет предотвратить конденсацию топлива на стенках канала, не ухудшая поток, и для нее требуется намного меньше времени, чем на полировку.
• Сделайте как можно лучшую обработку клапанов и добавьте 30° фаску на верхней части седла и на задней части клапана. 45°-ные седла должны иметь ширину примерно 1,65 мм для впускных клапанов и примерно 1,91 мм для выпускных клапанов.
• Хотя поток часто улучшается при использовании клапанов в форме тюльпана на головках со сферическими камерами сгорания и каналами в ряд, на двигателях с клинообразными камерами сгорания используйте только клапаны с плоской обычной стороной.
• Удаляйте все острые края с нижней стороны клапанов, добавив нижнюю фаску с углом от 30° до 35°.
Впускной канал и размер клапанов
Одним из самых легких путей потери мощности форсированного или гоночного двигателя является использование выпускной системы с ограниченной пропускной способностью. Слово "система" в данном случае относится ко всей длине выпускного тракта, от выпускного клапана до конца выхлопной трубы. Любое сопротивление на этом пути уменьшает мощность и экономичность двигателя. Любое обратное давление в системе надавливает на поршень, когда он идет вверх при такте выпуска. Это давление вниз на поршень делает отрицательную работу. Она вычитается из рабочего хода. С любой точки зрения, поток выхлопных газов из двигателя должен выходить как можно легче.
Может казаться очевидным, что система с ограничениями ухудшит работу двигателя, но менее очевидно то, что плохо изготовленная система без глушителя для грузового автомобиля может также ухудшить мощность и топливную эффективность. Во многих случаях гонки на длинные дистанции могут быть выиграны благодаря меньшему количеству остановок для заправок и весу имеющегося в автомобиле топлива. В таких ситуациях максимальная экономия топлива непосредственно связана с эффективностью выпускной системы.
Конструкция выпускной системы также играет заметную роль при получении оптимальной мощности, и следующая далее глава будет посвящена этому важному предмету. Однако, поток выхлопных газов начинается у выпускного клапана и канала, и конструкция выпускного канала должна обеспечивать минимальное сопротивление и соответствующую скорость, необходимые для удаления отработанных газов в период перекрытия клапанов.
Удаление металла из областей максимальной скорости, не опускание "пола" канала, удаление выступов около седел клапанов, уменьшение размеров направляющих втулок клапанов, установка бронзовых направляющих втулок и обеспечение точной работы клапанов - все эти меры являются необходимыми.
Вдобавок к этому, установка выпускных клапанов большего размера может улучшить мощность двигателя. Но это может быть напрасной мерой, если размер клапана больше,, чем в определенной пропорции от диаметра впускного канала. Звучит странно? Это фактор смещения потока, который является важным при конструировании и форсирования двигателя.
Размеры впускных и выпускных клапанов
Если вы разрабатываете головку блока цилиндров для получения максимальной мощности, то не будет никаким сюрпризом, что основной целью является максимальный поток. Это, кроме Всего прочего, требует использования клапанов большего размера, которые могут быть физически установлены в камеры сгорания. Это требует решения, как лучше всего разделить имеющееся пространство между впускными и выпускными клапанами. Другими словами, что лучше: большой впускной и маленький выпускной клапан, оба клапана одинакового размера или большой выпускной и маленький впускной клапан? Прежде всего, можно подумать, что большой выпускной клапан - это тот путь, которым нужно идти; после всего отработанные газы, без сомнения, занимают больший объем, чем газы, втянутые в цилиндр через впускную систему. Однако, когда мы касаемся мощности, действует другое "железное" правило: легче опустошить цилиндр, чем наполнить его. Годы экспериментов показали, что оптимальный размер выпускного клапана должен составлять примерно около 75% от впускного или, если точнее, поток через него должен составлять примерно 75% потока через впускной клапан. Это правило применяется только тогда, когда диаметры комбинируемых клапанов равны общему имеющемуся пространству в камере, т. е. клапаны почти касаются друг друга, как часто бывает в гоночных двигателях. Если используются клапаны с размерами, меньшими, чем максимальные, а мощность не является основной целью, то баланс между потоками впускного и выпускного каналов не так критичен. Самое простое правило, которому нужно следовать: если основным требованием является мощность, то следуйте нормальному соотношению 0,75:1. Это правило можно изменить в тех случаях, когда двигатель оснащен системой турбонаддува или впрыска окиси азота. Для этих систем требуется обеспечение большего потока выхлопных газов и может успешно использоваться соотношение диаметров выпускного и впускного клапанов, составляющее 0,9:1 (поток выхлопных газов составляет 90% от потока впускаемой смеси) или даже больше. К сожалению, установка увеличенных выпускных клапанов имеет "ловушку", которая обычно не связана с увеличением размеров впускных клапанов. Водяная рубашка внутри головки блока цилиндров расположена рядом с седлами выпускных клапанов. Это помогает поддерживать клапаны и седла холодными, но часто препятствует установке клапанов максимального размера. Вдобавок, тонкие отливки и большое количество тепла (побочный продукт высокой мощности) могут привести к образованию трещин в седлах, и это обычно укорачивает срок службы головки блока. Замечание. Когда главной целью конструктора, является экономия, а не мощность, размер выпускного клапана может быть увеличен до соотношения 0,75:1 даже при увеличении диаметра впускного клапана. Когда поток выпускного канала увеличивается, то пробег и срок службы двигателя будут улучшены. Однако здесь есть предел, как и во всем. Выпускные клапаны, размер которых превышает 90-95% от размера впускного клапана, дают очень маленькую дополнительную топливную экономию, и так как они используют пространство, обычно отдаваемое впускным клапанам, то потенциал по мощности будет уменьшен.

Направляющие втулки и сёдла клапанов
Увеличенный износ направляющих втулок клапанов может быть проблемой для распределительных валов с большим подъёмом клапанов. Даже если двигатель оснащается более "спокойным" распределительным валом, износ направляющих втулок может по-прежнему оставаться проблемой. Когда зазор в направляющей втулке увеличивается, клапаны могут располагаться на седле неравномерно и могут образоваться утечки, что приведет к "утечкам" мощности из камеры сгорания. Изношенные втулки могут также привести к попаданию масла в цилиндры. Когда масло смешивается с рабочей смесью, оно снижает октановое число топлива и находящееся в камере сгорания топливо будет уже ниже по октановому числу, загрязнение маслом увеличит шанс возникновения детонации, особенно при высоких степенях сжатия. Лучшей профилактикой износа направляющих втулок будет установка бронзовых направляющих втулок или бронзовых вставок. Если это сделано правильно, то они надолго "переживут" втулки из чугуна. Тогда как бронзовые втулки лишь не намного дороже, их установка является разумным вложением средств, т. к. в дополнение к уменьшению зазоров клапан-втулка, они выдерживают недостаток смазки. И если вы хотите достичь высоких характеристик двигателя, то используйте бронзовые втулки.
Когда установлены бронзовые направляющие втулки и стабилизирован зазор в них, внимание нужно переключить на сальники (маслоотражательные колпачки) клапанов. Многие промышленные головки блока цилиндров не используют положительные качества сальников стержней клапанов; вместо этого они могут использовать уплотнения зонтичного типа, которые препятствуют попаданию излишков масла на стержни клапанов или же они могут не использовать сальники вообще. Отсутствие сальников это более чем смелый шаг фирмы-производителя. Чугунные направляющие втулки нуждаются в обильной смазке, фактически они требуют намного больше, чем обычно получают. Однако бронзовые направляющие требуют намного меньше смазки и из-за этого можно использовать эффективные сальники (как минимум на впускных клапанах) и добиваться малых зазоров в направляющих втулках - всё это улучшит уплотнение клапанов, работу двигателя и увеличит срок службы втулок.
Если вы используете бронзовые направляющие втулки, то приобретите лучшие сальники клапанов, которые можно приобрести. Установка таких сальников часто требует обработки, но в большинстве сальники могут потребоваться только на впускных клапанах. Масло не стремиться попасть в направляющие втулки выпускных клапанов из-за высокого давления в выпускной системе. Но даже в этом случае некоторые конструкторы двигателей используют принудительное уплотнение (сальники) на впускных клапанах, и в качестве дополнительной меры, - сальники зонтичного типа на выпускных клапанах для уменьшения попадания масла в каналы.
Если каналы изношены и нуждаются в замене, рассмотрите использование замены для клапанов, которые имеют хромированные стержни - вы существенно увеличите срок службы направляющей втулки и клапана. Хромированные стержни клапанов работают особенно хорошо с бронзовыми втулками и могут быть использованы с зазором, близким к нулю, т.к. хром и бронза имеют очень мало шансов быть "прихваченными" друг к другу. Хромированные стержни клапанов и бронзовые направляющие втулки часто работают на протяжении более 150 000 км без заметного износа.
В заключении если Вы не используете бронзовые направляющие втулки, обратите особое внимание на марки сталей, используемых для производства клапанов, особенно нержавеющие стали, т.к. они не очень сочетаются с чугунными втулками. Бронзовые направляющие втулки напротив совместимы практически со всеми широко используемыми материалами для стержней клапанов и проявляют хорошие характеристики по сопротивляемости износу, работая совместно с такими материалами.
Одной из неисправностей головки блока, о которой почти только и слышали несколько лет, являются выемки у сёдел выпускных клапанов. В прошлом свинцовые соединения, добавляемые в бензин, обеспечивали качественную "смазку", которая эффективно противостояла эрозии седел выпускных клапанов. В наши дни состав бензина не обеспечивает необходимую смазку клапанов и сёдел. Выемки образующиеся у седел, являются вполне реальной проблемой. Эрозия возникает не только из-за использования неэтилированного бензина, но и из-за высоких рабочих температур выпускных клапанов и зазоров в направляющих втулках. Если температуры клапанов являются высокими, то температуры седел клапанов также будут высокими, (из-за того, что большая часть тепла, поглощённого выпускными клапанами, передаётся сёдлам), а при высоких температурах чугун становится менее устойчив к постоянным ударам от работающих клапанов. Эта проблема усиливается из-за ослабления клапанов в направляющих втулках, так как контакт стержня и клапана с втулкой происходит по-другому и клапан рассеивает тепло иначе. Более того, ослабленные втулки приводят к тому, что клапан садится в седло в неправильном положении, что ускоряет эрозию.
Становится очевидным, что имеется другая важная причина для использования бронзовых направляющих втулок. Бронза имеет отличные характеристики противостояния износу и допускает работу с малыми зазорами. В дополнение к этому, сама бронза имеет улучшенные характеристики теплоотдачи по сравнению с чугуном. Таким образом, когда используются бронзовые направляющие втулки, от клапанов отводится больше тепла в систему охлаждения.

Камера сгорания
Общие сведения
Большинство дискуссий, относящихся к типам камер сгорания, касается того, какой из них лучше для форсированного двигателя. Двумя основными типами, имеющимися в распоряжении для конструкторов двигателей, являются следующие:
• замкнутая или разделенная камера сгорания классической клиновидной формы, в которой камера не простирается на весь диаметр отверстия цилиндра на стороне свечи зажигания или закаленной стороне (противоположной) головки блока;
• открытая или неразделенная камера, - модифицированная версия клиновидной камеры, которая простирается на сторону свечи зажигания или закаленную (противоположную) сторону головки блока или, в некоторых случаях, в обе стороны до полного диаметра отверстия цилиндра.
Изначально неразделенные камеры развивались по двум причинам:
• они минимизировали выступание клапанов на некоторых форсированных двигателях в начале и середине 60-х годов, но из-за ужесточения требований к токсичности выхлопных газов было установлено, что
• неразделенные камеры стремились уменьшить токсичные выбросы.

Эти головки с неразделенными камерами иногда можно узнать по их очень небольшой или вообще отсутствующей закаленной (противоположной свече зажигания) области.
Некоторые головки блока, обычно известные как конструкции c разделенной камерой сгорания, в действительности являются головками с неразделенными камерами сгорания. Ранние конструкции включают в себя камеру, которая простирается до диаметра отверстия цилиндра на стороне свечи зажигания (классическая конструкция с неразделенной камерой сгорания). Но они часто считаются головками с разделенными камерами сгорания, т. к. поздние головки двигателей, обычно называемые головками с разделенными камерами, имеют выемку на противоположной стороне (от свечи), которая расширяет камеру до полного отверстия цилиндра. В этом случае более ранние "меньше разделенные" камеры считаются многими конструкторами двигателей разделенными камерами.
Несмотря на то, что головки с неразделенными камерами сгорания являются желательными для форсированных двигателей, головки с разделенными камерами часто являются вполне адекватным выбором вместе с распределительным валом особого профиля, пока не возникает избыточное выступание клапанов. Хотя многие головки с разделенными камерами "страдают" от увеличенного выступания клапанов, осторожная корректировка формы (и иногда это не требует сильной обработки) может уменьшить сильное выступание. Почему? Потому что слегка модифицированные головки блока могут часто обеспечить поток, сравнимый с головками с неразделенными камерами сгорания при подъеме клапанов величиной до 14,0 мм. Головки с неразделенными камерами сгорания, однако, имеют отдельные преимущества при сравнении, т. к. они стремятся уменьшить выступание клапанов при высоких значениях подъема клапанов, часто составляющего 17,8 мм. Однако для повседневного использования в головках с неразделенными камерами сгорания редко имеется какое-либо увеличение потока (и мощности). Фактически, головки с неразделенными камерами могут в чем-то уменьшить потенциал мощности, т. к. камера большего размера меньше сопротивляется детонации.
Обработка камеры сгорания
Если использование термостойких покрытий в камере сгорания не представляется возможным, то полезным шагом может быть полировка поверхности камеры сгорания. Это уменьшит поверхность, благодаря удалению тысяч "закоулков и щелей", которые поглощают тепло. Это также уменьшит вероятность образования нагара, который служит причиной детонации. Однако следует иметь в виду, что полировка камер сгорания "открывает дверь" для потенциальных проблем. Имеется несколько вещей, о которых следует помнить:
• Не увеличивайте камеру сгорания больше, чем требуется. Увеличенная камера сгорания требует дополнительного распространения пламени и имеет большую поверхность, поглощающую тепло.
• Если вы хотите сделать больше, чем отполировать камеры сгорания, уберите только материал, который "вносит вклад" в выступание клапанов. Не пытайтесь изменять форму камер сгорания, пока не познакомитесь с тем, как сделанные вами модификации будут влиять на распространение пламени.
• Всегда обрабатывайте камеры, приняв меры для защиты клапанов и седел. Одно неосторожное движение полировочной головки может повредить седла клапанов.
• Камеры сгорания большего размера требуют большего времени для распространения пламени и имеют большую площадь поверхности, поглощающей тепло. Используйте меньшие камеры и не увеличивайте камеры сгорания больше, чем это необходимо.
• Убирайте только материал, который увеличивает, выступание клапанов. Сглаживайте все острые края, но не изменяйте форму камер сгорания.
• Измерьте объем всех камер сгорания после обработки клапанов и удаления материала для уменьшения выступания клапанов, т. к. обе эти операции сильно влияют на окончательный объем камеры
• Для защиты седел клапанов от повреждений всегда вставляйте пару имитаторов клапанов перед обработкой камеры сгорания.
Самостоятельная обработка камеры сгорания
Если у вас есть хотя бы средний опыт механика, высокоскоростная шлифовальная машинка и несколько шлифовальных головок, то самостоятельная обработка головки блока цилиндров может быть осуществлена даже за пару выходных дней. Модификации, которые можно сделать самостоятельно конечно не заменят обработку головки специалистами из специальной мастерской, но можно добиться существенного улучшения характеристик потока просто очисткой, сглаживанием и, в некоторой степени, изменением формы каналов. Помните, что форма, а не полировка, является наиболее важным фактором. За возможным исключением некоторых камер сгорания, не расстраивайтесь, если вы сделали грубую обработку. Лучше позаботьтесь о том, чтобы воспроизвести правильную форму. Если вы намереваетесь изготовить форсированный двигатель и работаете в рамках ограниченных финансовых возможностей, то относительно простые модификации головки блока цилиндров могут обеспечить большие улучшения за разумную цену. Если головка будет использована на нормальном двигателе, то хорошо сделанная обработка может часто улучшить характеристики примерно на 5 -10% Возможен даже больший прирост, если используются другие тщательно подобранные детали, такие как соответствующий распределительный вал, впускной коллектор и карбюратор (или электронная система впрыска топлива), которые помогут обеспечить желаемый диапазон оборотов и вес двигателя, повышенную степень сжатия и т. д. В этих случаях тюнинг головки блока, выполненный вами в своем гараже, может улучшить мощность на 10% или даже больше.
Степень сжатия
Термическая эффективность и, следовательно, эффективность, с которой топливо используется для совершения полезной работы, непосредственно связана со степенью сжатия. Чем выше степень сжатия, тем меньше топлива будет использовано для получения той же самой мощности. Типичные значения степеней сжатия от 18:1 до 22:1, используемые в дизельных двигателях, частично объясняют, почему они так эффективно работают. Вдобавок К этому, для полной реализации преимуществ этой высокой степени сжатия, на дизельном двигателе никогда не используется дроссельная заслонка. Другими словами, он всасывает как можно больше воздуха, практически так же, как и бензиновый двигатель при широко открытой дроссельной заслонке. Вместо ограничения количества воздуха, поступающего в двигатель, с помощью дроссельной заслонки мощность двигателя регулируется с помощью изменения количества топлива, впрыскиваемого в цилиндр. Это значит, что даже при низких уровнях мощности (когда в камеру сгорания впрыскивается очень малое количество топлива), дизельный двигатель сжимает воздух в цилиндре очень сильно; при этом выделяется столько тепла, что его достаточно для воспламенения даже очень обедненной смеси. Однако когда дросселируется двигатель с искровым зажиганием (бензиновый двигатель), то количество воздуха, втягиваемого в цилиндры, уменьшается, и так как это эффективная степень сжатия, то в результате топливная эффективность при частично закрытой дроссельной заслонке тоже уменьшается. Нет сомнений в том, что высокая степень сжатия увеличивает мощность. Изображенная далее схема показывает, что мощность при полном открывании дроссельной заслонки теоретически улучшается при увеличении степени сжатия. Приведенные данные предполагают, что увеличение степени сжатия не создает проблем в других областях, таких как детонация т. д. Вы заметите, что закон уменьшения приводит к довольно простому выводу: когда степень сжатия идет вверх, то при каждом увеличении прирост мощности будет все меньше. К примеру, увеличение компрессии от 8,0:1 до 9,0:1 приводит к большему увеличению мощности, чем увеличение сжатия с 11,0:1 до 12,0:1 (2% роста мощности против 1,3%). Указанные значения являются типичными для двигателей, использующих распределительные валы с относительно коротким периодом впуска, подобные валам во многих форсированных двигателях. Когда продолжительность такта впуска увеличивается (путем установки распределительного вала с более длительным периодом впуска), прирост мощности от увеличения степени сжатия становится даже больше. Это происходит оттого, что данные базируются на механических степенях сжатия (т.е. определенных путем математических расчетов из фиксированного объема), а не на динамических степенях сжатия, которые продолжают увеличиваться, когда эффективность впуска увеличивается. Когда система впуска модифицируется для улучшения наполнения, то динамическая степень сжатия увеличивается очень похожим образом, как и при увеличении размера поршня, т. к. в цилиндр поступает дополнительное количество воздуха и топлива. Эффективность впуска может продолжать увеличиваться даже до точки "упаковки" цилиндра (объемная эффективность выше 100%), как это предполагается некоторыми комбинациями впускного и выпускного коллекторов. Максимальное давление внутри камеры сгорания перед воспламенением изменяется, когда изменяется плотность подаваемой смеси. Когда система впуска работает с низкой эффективностью, т. е. когда дроссельные заслонки закрыты или впускная система забита, то цилиндр наполняется лишь частично и динамическое давление сжатия низкое. Когда система впуска работает с высокой объемной эффективностью (значение более 100% достигается на многих гоночных двигателях), динамическая степень сжатия может создавать давления, которые превышают давления, ожидаемые от механической (рассчитанной) степени сжатия. В таких случаях увеличение механической степени сжатия может ввести двигатель в режим детонации и уменьшить мощность и надежность двигателя. Увеличение степени сжатия не всегда приводят к увеличению мощности. Если статическая (подсчитанная) степень сжатия уже находится около предела детонации для используемого топлива, то дальнейшее увеличение-статической степени сжатия может ухудшить мощность и/или надежность двигателя. Как ранее упоминалось, это особенно справедливо, когда специальный распределительный вал и системы впуска и выпуска добиваются объемной эффективности (VE) величиной более 100%. Когда (VE) увеличивается, то динамическая степень сжатия также увеличивается, так как цилиндр "упаковывается" смесью так, как если бы работал невидимый нагнетатель. Другой эффект от увеличения степени сжатия довольно незначителен и неизвестен некоторым создателям двигателей. Когда VE превышает 100%, поступившая смесь находится под небольшим положительным давлением, однако, она может заполнить только пространство в цилиндре плюс пространство в камере сгорания. К примеру, если объем цилиндра и камеры составляет вместе 416,2 см3, то это фиксированное пространство будет в основном определять, сколько топливовоздушной смеси может попасть в цилиндр. Если мы решаем увеличить степень сжатия путем уменьшения объема камеры сгорания или путем увеличения размера выпуклости поршня (это наиболее распространенные методы), то это пространство будет не более названной величины. Да, цилиндр сохраняет постоянный рабочий объем - рабочий объем двигателя не изменялся. Но изменили общий объем цилиндра и камеры сгорания. Это означает, что пространство для поступающей рабочей смеси уменьшается. Таким образом, при увеличении степени сжатия мы почти незаметно уменьшили объемную эффективность двигателя. Воспользуемся воображаемым примером для уяснения деталей. Представим себе двигатель со степенью сжатия 2,0:1 и, просто ради аргумента скажем, что общий объем (нерабочий объем) одного цилиндра, когда поршень находится в НМТ (нижней мертвой точке), составляет 3278 см3. Это объем, создаваемый поршнем при одном такте плюс объем камеры сгорания над поршнем, находящимся в положении ВМП (верхней мертвой точке). Так как степень сжатия составляет 2,0:1, то объем над поршнем, находящимся в ВМТ должен составлять половину от общего объема цилиндра или 1639 см3, (т. е. 1639 см3 "выбранного" объема плюс 1639 см3 камеры сгорания равны 3278 см3 общего объема цилиндра). Даже при 3278 см3 во всем цилиндре двигатель может втянуть только 1639 см3 свежей рабочей смеси, т. к. имеется давление в коллекторе у впускного канала (в случае с VE, равной 100%) и только вытесненный объем поршня может работать для втягивания воздуха и топлива. Остальные 1639 см3 будут заполнены выхлопными газами от последнего цикла сгорания. Добавим теперь к воображаемому двигателю нагнетатель (компрессор) и отрегулируем давление так, что он будет подавать 3278 см3 топливовоэ-душной смесив цилиндр вместо исходных 1639 см3, которые двигатель мог "вдохнуть" в прежнем состоянии. С нашим нагнетателем в цилиндре будет находиться 3278 , см3 свежей смеси в конце такта впуска и не будет остаточных выхлопных газов. Это существенно улучшит мощность. Но что произойдет, если в безрассудных поисках дополнительной мощности увеличить степень сжатия до 3,0:1, уменьшив объем камеры сгорания над поршнем в ВМТ со1639 см3 до 1092 см3? Когда поршень находится в конце такта впуска, общий объем цилиндра будет теперь только 2731 см3. Если не изменять давление наддува, то оно может "вдавить" только 2731 см3 топливовоз-душной смеси в цилиндр. Это уменьшит объем смеси на 547 см3 или примерно на 17%. Двигатель втягивает менее воспламененную смесь, объемная эффективность уменьшается (на 17%) и мощность снижается. Справедливо то, что 2731 см3 подаваемой смеси сгорает с более высокой эффективностью благодаря увеличению степени сжатия, но улучшение степени сжатия покрывает только 5% из. 17% потерь мощности. Многие из вас могут теперь реализовать важные преимущества, получая максимально возможную VE (объемную эффективность). Чем выше VE, которую вы сможете получить, тем ниже будет требуемая степень сжатия; а чем ниже степень сжатия, тем меньше выступ поршня, тем легче фронту пламени распространяться в объеме камеры сгорания. Эти соотношения являются некоторыми из тех методов, которые используют профессионалы для увеличения мощности двигателей. Верхние пределы степени сжатия и фазы газораспределения распределительного вала достаточно хорошо определены для гоночных двигателей, "обычные" форсированные двигатели для повседневного использования как правило работают при более низких уровнях мощности и в основном при частично открытой дроссельной заслонке. Увеличение степени сжатия может иногда обеспечить заметный прирост мощности, но это же самое увеличение степени сжатия может дать даже большее улучшение топливной экономичности. При увеличении степени сжатия от 8,0:1 до 10,0:1 мощность при полностью открытой дроссельной заслонке может увеличиться на 3 или 4%. Но экономия топлива при частично закрытой дроссельной заслонке может увеличиться более чем на 15%. В этом нет ничего удивительного, если вы помните, что динамическая степень сжатия при частично открытой дроссельной заслонке заметно ниже, чем статическая степень сжатия. Увеличение статической степени сжатия добавляет эффективности в нужном месте: при частично открытой дроссельной заслонке. Более высокая степень сжатия, конечно, требует использования высокооктанового топлива и часто имеющееся топливо имеет гораздо меньшее октановое число, чем хотелось бы многим. Имеются несколько путей обойти данную проблему. Если вы изготавливаете двигатель с "нуля" и желаете сберечь время, обратившись к инженеру с опытом изготовления форсированных двигателей, вы можете получить рекомендации по увеличению степени сжатия, приводящему к заметному росту мощности двигателя. В некоторых случаях двигатели со степенью сжатия порядка 11:1 успешно использовали бензин с октановым числом 87, но это требует подбора всех деталей двигателя, особенно конструкции распределительного вала и головки блока цилиндров плюс использование системы впрыска воды. Если вы выберете метод изготовления с "нуля", одним из самых легких путей увеличения степени сжатия является использование традиционных поршней для высокой степени сжатия, имеющих минимальную высоту куполообразной части, так что нет сильных помех распространению пламени. Если желаемая степень сжатия не может быть достигнута путем плавного увеличения куполообразной части и уменьшением объема камеры сгорания с помощью обработки головки блока (лучше угловая обработка), то лучшим путем для увеличения степени сжатия будет увеличение диаметра отверстия цилиндра, часто с помощью расточки блока. Выдерживая практические пределы для толщины стенок цилиндров (обычно допускается увеличение диаметра отверстия цилиндра не более чем на 0,75 - 1,0 мм), эта модификация может увеличить степень сжатия путем добавления рабочего объема, что уменьшает необходимость больших "куполов" у поршней или камер сгорания меньшего объема. Если проект вашего двигателя более "умеренный", то, возможно, будет достаточно обработки головки блока, а стоимость обработки головки составляет одну из самых дешевых операций по увеличению мощности и экономичности двигателя.
Термическая эффективность
Сгорание топлива в камере сгорания двигателя генерирует тепло, которое расширяет продукты сгорания и "толкает" поршни вниз в отверстие цилиндра. Если тепло отводится от расширяющейся смеси перед тем, как она сможет полностью воздействовать на поршень, потенциальная мощность будет потеряна. Если можно было бы построить идеальный двигатель, то он использовал бы тепло сгорания для расширения рабочей смеси, и ничего бы не терялось из-за рассеяния тепла окружающими металлическими поверхностями. При этих условиях двигатель будет иметь максимальную термическую эффективность, а его выходная мощность будет почти в два раза больше, чем у обычного форсированного двигателя. Представьте себе: двигатель V8 рабочим объемом (4916 см3) с одним Четырехкамерным карбюратором выдает мощность почти 800 л.с.! К сожалению, практически невозможно добиться термической эффективности, близкой к 100%. Одной из целей проекта любого двигателя должна быть максимальная термическая эффективность, т. к. она контролирует то, как двигатель преобразует энергию топлива в полезную мощность. Имеется много путей улучшения термической эффективности. Некоторые являются незначительными и требуют серьезных исследований для их обнаружения, другие же являются очевидными. Тепловые характеристики металла, подвергаемого воздействию горящей топливовоздушной смеси в первую очередь в головке блока цилиндров, являются одним из путей. Алюминиевые головки блока являются более эффективными проводниками тепла, чем чугун, а мощность может быть заметно снижена из-за потерь тепла в водяной рубашке. Но с другой стороны, алюминиевая головка "страдает" от некоторых разогретых мест в камере сгорания и обычно имеет более низкие температуры поверхности. Эти последние факторы позволяют достичь более высокой степени сжатия при использовании алюминия и уменьшают чувствительность к детонации. Для двигателей с низкой степенью сжатия чугун является лучшей основой из-за его улучшенной тепловой эффективности. Теплопроводность алюминия и чугуна может быть существенно уменьшена путем использования относительно новой технологии для автомобильной индустрии: покрытия из тепловых барьеров. Эти высокотехнологичные изолирующие материалы с толщиной порядка 0,4 мм могут серьезно уменьшить теплопроводность. Их использование в последние годы стало достаточно распространенным и, без сомнения, они работают. Степень прироста мощности от использования покрытий из тепловых барьеров зависит от конструкции головки, размера камеры сгорания и от материала головки (как уже говорилось, алюминий имеет лучшую теплопроводность и может получить больше преимуществ от изолирующих покрытий). Вообще говоря, обычным является прирост мощности порядка 3%. Также и прирост в экономии топлива при "полном дросселе" часто составляет около 3% с возможно большими улучшениями в экономичности при работе с частично открытой дроссельной заслонкой. Как было отмечено изолирующие покрытия на поршнях могут также улучшить термическую (тепловую) эффективность примерно на 4-8%. Таким образом, покрытие поршней и камер сгорания может улучшить мощность примерно на 10%.
Термостойкие покрытия для клапанов
Хотя поршни и камеры сгорания являются основными областями использования термостойких покрытий, покрытия могут быть использованы и для других менее очевидных областей. Покрытия могут быть использованы на впускных и выпускных клапанах для дальнейшего улучшения мощности и надежности двигателя. Обычно происходит так, что поступающая рабочая смесь отдает значительную часть тепла, когда проходит через впускной клапан. Покрытие передней поверхности впускного клапана может существенно уменьшить температуру на задней стороне клапана, улучшая тепловую эффективность и увеличивая мощность. Более того, большинство проблем, связанных с клапанами, относятся к теплу и концентрируются вокруг очень горячих выпускных клапанов. Термостойкие покрытия уменьшают температуру головки клапана и, соответственно, потребность в широких седлах для выпускных клапанов. Покрытие на передней части выпускного клапана предотвращает то, что тепло от сгорания смеси достигнет клапана, тогда меньше тепла передается на седло. В дополнение к этому, если покрытием защищена задняя сторона выпускного клапана (за исключением седла и стержня), -тo тепло, достигающее клапана, уменьшается еще больше. Эти модификации позволяют конструкторам концентрировать свое внимание на оптимизации ширины седла клапана для улучшения характеристик потока. Таким образом, в случае покрытия выпускных клапанов, изолирующий материал может не дать непосредственных результатов в увеличении мощности, но это допускает использование модификаций, которые могут улучшить характеристики двигателя. К сожалению, описываемые специальные покрытия являются относительно дорогими и редко используются на других двигателях, кроме профессиональных гоночных двигателей. На форсированных двигателях для повседневного использования, создание которых часто ограничивается финансовыми возможностями, указанные модификации вряд ли являются практичными. Многие другие модификации могут быть осуществлены в пределах разумного бюджета. Они являются менее дорогими и более эффективными, и в связи с этим можно найти возможность лучшего использования ограниченных финансовых ресурсов. Термостойкие покрытия должны рассматриваться только как "последний" шаг при изготовлении дорогого двигателя.

Перекрытие клапанов
Перекрытие клапанов соответствует углу поворота коленвала (в градусах), при котором и впускной и выпускной каналы открыты. Подобно продолжительности открывания, длительное перекрытие также увеличивает мощность на высоких оборотах, но ценой экономичности, ухудшения состава выхлопных газов и мощности на низких оборотах. Два фактора влияют на данные по перекрытию клапанов. Первый и очевидный - это величина продолжительности открывания клапанов. Второй - это угол между центральными линиями кулачков или смещение кулачков друг относительно друга на распредвалу.
Другие факторы

Угол между центрами кулачков опосредовано изменяется с перекрытием клапанов. Это означает, что при увеличении перекрытия клапанов угол между центрами кулачков уменьшается и наоборот. Увеличение угла обычно увеличивает крутящий момент на низких оборотах, а уменьшение угла улучшает мощность на высоких оборотах.
Другой областью конструкции, которая влияет на характеристики распредвала, является профиль кулачка. Скорость подъема клапана, ускорение при подъеме и скорость закрывания клапана определяются формой кулачков и влияют на работу двигателя. При более быстром открывании и закрывании клапанов может быть получен больший поток смеси при данной величине продолжительности открывания клапана.
Распределительные валы и детали механизма привода клапанов должны подбираться друг к другу для правильной совместной работы. Вдобавок к этому нужно тщательно подбирать распредвал/детали клапанного механизма к другим деталям, используемым в двигателе и в автомобиле, особенно деталям впускной и выпускной системы, а также трансмиссии.
Распредвал является механическим "мозгом" двигателя. Он определяет, когда и как быстро клапаны будут открываться и закрываться, а также как долго они остаются открытыми под действием толкателей клапанов и эллиптических кулачков распредвала при его вращении.
Распредвал, более чем любая другая деталь определяет рабочие характеристики (или индивидуальность) двигателя. Простая конструкция коленвала не может обеспечивать максимальную мощность двигателя от холостого хода до предельных оборотов. Как и все другие детали автомобиля, конструкция распредвапа является компромиссом. Если распредвал не предназначен для эффективного крутящего момента на низких оборотах, приемистости и экономичности, то, в противовес этому, он должен дать высокую мощность на высоких оборотах. И наоборот, распредвалы предназначенные для работы на низких оборотах, плохо работают на высоких оборотах.
Напомним еще раз: перед обработкой впускных каналов машинкой примите практическое решение относительно подъема клапанов, а затем конструируйте каналы, чтобы обеспечить как можно больший поток смеси при данном подъеме. Точное решение того, как добиться этой цели, часто требует дополнительных затрат времени для проведения стендовых испытаний или постоянных консультаций со специалистами по приготовлению и доводке головок блока цилиндров.
В практических пределах, как указано выше, подберите распределительный вал, который открывает клапаны на величину достаточную для того, чтобы впускной канал пропускал поток как можно лучше.
Например, если канал хорошо пропускает поток при подъеме клапана 14 мм, но поток спадает при более высоких значениях подъе
  
 
   Создание сайта:   Artspace.Ru
ГЕНЕРАЛЬНЫЙ СПОНСОР ПРОЕКТА:
Musa-motors:
VOLVO JEEP, JAGUAR, RENAULT, CHRYSLER, LAND ROVER
   Спонсоры проекта:

Очистка воды

Фильтры Honeywell

Надувные бассейны

Тюнинг автомобилей. Турбомоторы.
TopList